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On (2 + 1)-dimensional Ermakov systems 
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Abstract. Ermakovfype systems in 2 i I dimensions are introduced. Multiwave solutions of a 
(2+ 1)-dimensional Pinney equation and a modulated (2+ 1)-dimensional sine-Gordon equation 
are thereby constructed 

1. Introduction 

The analysis of the coupled nonlinear ordinary differential equations known as Ermakov 
systems originated in 1880 [l]. There has since been an extensive literature devoted to their 
study [Z-271. The main theoretical interest in such systems centres around the fact that 
they admit a constant of motion, the Lewis-Ray-Reid (LRR) invariant, whereby a nonlinear 
superposition principle may be constructed. In terms of applications, Ermakov systems 
arise, in particular, in nonlinear elasticity [28,29] and nonlinear optics [3Q-34]. 

In a recent development, it was shown that, remarkably, the LRR invariant is the key to 
a linearization procedure for the standard Ermakov system [24]. This linearization has been 
exploited by Athome [27] to analyse the stability and periodicity of the particular Ermakov 
system derived in the two-layer shallow water context in [23]. 

It is natural to seek generalizations of Ermakov systems which preserve their attractive 
properties. In this connection, Athorne [25] has recently introduced a class of nonlinear 
dynamical systems which include as special cases the autonomous Ermakov system and 
Kepler-type central force problems with angular dependence on the force. It was shown 
that such nonlinear Kepler-Ermakov (KE) systems are linearizable via essentially the 
same procedure as that given in [24]. This represents a modification of the Whittaker 
transformation which allows the general problem of motion under central force to be reduced 
to the problem of motion in a parallel field of force [36]. Whittaker employed a constant of 
motion, namely the angular momentum, in his linearization procedure. In a similar manner, 
the linearization of the standard Ermakov system depends on the use of the LRR invariant., 
A generalized invariant and accompanying linearization was presented, for the KE system in 
[ U .  

Here, by contrast, our concern is not with the construction of invariants for extended 
Ermakov systems. Rather, we present multiwave solutions to (2+ I)-dimensional Ermakov 
systems. The procedure is a development of that adopted in [3740] in connection with 
soliton-like solutions of nonlinear Klein-Gordon equations. In this paper, a broad class 
of multiwave solutions are presented which are appropriate. in particular, both for a 
(2 + 1)-dimensional Pinney equation and a (2 + 1)-dimensional modulated sineGordon 
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equation. It is remarked that singlewave solutions of a modulated sineGordon equation 
were constructed by Ray via a Ermakov system in [17]. This work was later extended by 
Saermark [19] to produce kink solutions. 

2. (2 + l)-dimensional Ermakov systems 

Here, we consider (2 + 1)-dimensional Ermakov-type systems 

O @ + W ~ @ - P - ~ H ( @ / P )  = O  
DP + W'P - @ - 3 J ( p / @ )  0 

where 0 = g- ' / '&g '~*gU~~p and w may, in general, depend in an arbitrary manner on @, p 
and their partial derivatives; g-8 is the metric of the underlying three-dimensional Lorentz 
spacetime for which the signature 1 is adopted. 

A dimensional reduction of the system (2.1) is sought whereby it becomes the classical 
Ermakov system. This is effected here by requiring that @ and p depend only on two 
functions : and q which satisfy the conditions 

0: = Dq = 0 (V# = 1 (Vq)' = 0 v:vq = 0. (2.2) 

The existence of such functions restricts the structure of the underlying spacetime to be 
of the form of a pp-wave, i.e. flat-space + tensor product of a null-vector with itself. It 
follows from (2.2) that Vq is a geodesic null vector field and VE is spacelike. Choosing 
:, q and U ,  the affine parameter along the Vq geodesics, as coordinates, we can write the 
metric as 

dr'= dq(du-tm(:,q,u)dq)+d:'. (2.3) 

For functions independent of U ,  the d'Alembertian O'ieduces to afclq and (2.1) reduces to 
the Ermakov system 

(2.4) 

It is important to note that the quantity q enters into the system as a parameter, 
Now, (2.4) yields 

80 WO - @PC) = p-',H(@lp) - @-'J(p/@) (2.5) 

whence 

where 
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and a(q) is arbitrary. 
At this stage, it is convenient to proceed in terms of the independent variables 

g = eE+q 

h ee-q 

instead of 5 and q .  The conditions (2.2) then become 

U g = g  O h = h  

( V g Y  = g2 (Oh)' = h2 

( V g ) ( V h )  = gh. 

Integration of (2.6) yields 

whence 

The latter relation corresponds to the LRR invariant of standard Ermakov theory. 
Let us now turn to the conditions (2.11) on g and h and introduce the ansatz 

where 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

and Si, Ai are arbitrary phase constants. Insertion of (2.14) and (2.15) into (211) produces 
the restrictions 

(2.17) 

(2.18) 

A geometric interpretation of the conditions (2.17) and (2.18) is suggested. Thus, if the 
vector kl = (pl, 41, w1) is fixed subject to the requirement of its being a space-like unit 
vector then the endpoints of all the other ki = (pi, qi, wi) have to be on the intersection 
of  the light cone of the endpoint of kl and the unit hyperboloid; this intersection consists 
of two lines. The light cone of the endpoint of kz, however, will have only one line in 
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common with the’one of kl. Hence, the endpoints of all the ki lie on the unit hyperboloid 
and the straight null line determined by kl and the null vector kl - kz. 

The condition (2.18) is satisfied if 

( p . - p .  t j . 4 ,  . - q .  w . - w .  j ) = a i j ( A , P , u )  (2.19) 

where 

A’+ p2 = v2 (2.20) 

and (2.17) requires that 

Apj + pqj - V W ~  = 0 ~ i j  # 0. (2.21) 

In the above, the aij are arbitrary constants. 

and w1 are determined via the constraints 
Once A, p, U are chosen in accordance with (2.20), if p1 is chosen arbitrarily, then q1 

p: + q: - w: = 1 (2.22) 

(2.23) Api + pqi  - V W I  = 0. 

The remaining (p i ,  qi, wi) are then given by 

pi = p i  CffiiA q i = a + a i l p  wi = W l  + O l i l U .  (2.24) 

Accordingly, multiwave solutions of the conditions (2.11) are obtained in the form 

i=l 

where A ,  p, U and p1,qI. W I  are subject to the constraints (2.20), (2.22) and (2.23). 

3. The (2 + 1)-dimensional Pinney equation 

Here, attention is turned to the particular Ermakov system 

U$ + ~4 - k$-3 = 0 

o p  + w2p = 0 

coupled through w2. Thus, (3.1H3.2) represents a (Z+l)-dimensional Pinney system. It is 
noted that higher-dimensional Pinney equations arise in quantum mechanical systems [30]. 

In this case, the canonical Ermakov system is 

(3.3) 

(3.4) 
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The associated first integral (2.13) yields 

P@( - @PC = J21(7) - k 

PI@( -@PI{  = & G G z  

(3.5) 
Let p i ,  p2 be two linearly independent solutions of (3.4). The relation (3.5) yields 

PZ@F - @PPY = JZMV) - k (PZ/@)’ 

@w(pI, ,321 = p2 J- - PI JGGGG 

(3.6) 
and elimination  of @( gives 

(3.7) 
where W (P I ,  p2) is the Wronskian of p1, PI.’ Solution of (3.7) for @ produces the nonlinear 
superposition 

(3.8) 

(3.9) 

@ = [ W P ?  + 2F(V)PtPZ + i(v)P2211’2 
where i, ,?, ij satisfy the relation 

x i  - pz = k j W ( p l  ; pz). 

If o = o(q) and we take 

pl = sinwt f i  = cosw5 

then (3.8) yields 

@ = ta(v) + @ ( V I  sin(2o(?)t + Y(v))I’” (3.10) 

where 

01’ - @‘ = k /w .  (3.11) 

Thus, on use of (2.25)-(2.26), it is seen that the (2 + 1)-dimensional Pinney equation (3.1) 
admits the class of multiwave solutions given by the expression (3.10) with 

5 = PIX + q1y + W I ~  + 4 MWx, Y .  r ; W ( x ,  Y .  Wl (3.12) 

(3.13) 

(3.14) 

M 
q(x, y ,  f;A) := eWl(hX+ILY+”f)+& (3.15) 

It is noted that, for constant o and k ,  there exists a Lagrangian for Pinney’s. equation. In 
figure 1, the energy density E associated with the Lagrangian is plotted at fixed time t for 
a solution of (3.1) with o = k = 1. This solution corresponds to the simple choice 

a = c o s h y  @=s inhy  y = 2 e  4 (3.16) 

!=I 

together with 
= eX+Y-f h = eX-Y+r 

so that t = x and 7 = y - t .  In such a frame, the object moves in the positive y-direction 
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Fi!pre 1. Energy density associated with the Lagrangian for (3.1) for the solution (3.16) at 
fixed t. 

4. A (2 + 1)-dimensional modulated sineGordon equation 

The (2  + 1)-dimensional Ermakov system 

Cl@ + wz@ - kp-3 sin(@/p) = 0 

o p + o 2 p = o  

is considered next. This represents a (2  + 1)dimensional sine-Gordon equation (4.1) 
modulated by a function p ( x ,  y ,  t )  which, in turn, is governed by (4.2). It is noted that 
(1 + 1)-dimensional modulated systems of the type (4.1) and (4.2) have been considered by 
Ray [I71 and Saermark [19]. Therein, travelling wave solutions were obtained. 

In this case, H = k sin(@/p), J = 0 so that the canonical equation (2.6) becomes 

r,, =ksinr. , ,  (4.3) 

Thus, if r = r ( r )  is any solution of the nonlinear pendulum equation (4.3) then the nonlinear 
superposition 

@ = p ( ~ ) r ( S p - 2 1 ~ d c + I Y ( n ) ]  (4.4) 

where 

P g 1 4 + o z P = 0  (4.5) 

and c ,  q are given by (3.12)-(3.15) provides a multiwave solution of the modulated (2+ 1)- 
dimensional sine-Gordon equation (4.1). 

If, as in the (1 + 1)-dimensional case considered by Ray [17], the base solution 

r = 4 tan-’ exp[r/k’/’] (4.6) 

of (4.3) is taken together with the particular solution 

p =sine (4.7) 
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of (4.5) with o = 1 then the nonlinear superposition (4.4) of (4.6) and (4.7) produces the 
multiwave solution 

1 
4 =4sinetan-'exp~(-cott+or(ll))  (4.8) 

of the modulated (2 + 1)-dimensional s indordon  equation 

U@ - @ + k sin-3 t sin(@/ sint) = 0 (4.9) 

where e ,  7 are given by (3.12H3.15). 

y - t ,  (Y = 2e-q' and k = 1. 
In figure 2, the solution (4.8) is displayed at fixed time t in the special case e = x ,  rl = 

'i' 

Figure 2. The solution (4.8) at fixed f 

Append@ A (l+l)-dimensional Ermakov system. Applieation to nonlinear heat 
conduction 

Here, 'a (1 + 1)-dimensional Emakov system 

- a@k-'P-k-3 @? + 4zx + &)@ = P - 3 H ( @ / P )  

PXZ +&)P = @ - 3 J ( ~ / @ )  U # 0 

is introduced. 
Combination of (AI) and (A2) yields 

- 4 p@zx - @pxx = p-'H - 4-'J 

whence we obtain the canonical reduction 

- arLr + (r"-k)'krz~)x~ = ~ ( r )  
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where 

and Y(r) := k(H(r'1') - r-*J(r-*Ik)). 

to the nonlinear heat equation (A4) with a source term. 
Thus, it is seen that the (I+l)-dimensional Ermakov system (AlKA2) admits reduction 

In particular, if H = (p/r$)'J then it is seen that the nonlinear modulated heat equation 

646) k-1 4 - 3  -1  - 0  -a4 P @r + ~ $ . ~ - P P x , P  r$ - 

admits the nonlinear superposition principle 

where r is governed by the nonlinear heat equation 

The cases k = -1, k = -3 are of particular interest. Thus, if k = -1, (A8) is linearizable 
via a reciprocal transformation whereas if k = -3 it admits special group s m c t m  and 
associated similarity solutions. 
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