On (2+1)-dimensional Ermakov systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 262625
(http://iopscience.iop.org/0305-4470/26/11/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:42

Please note that terms and conditions apply.

On (2 +1)-dimensional Ermakov systems

C Rogers \dagger, C Hoenselaers \dagger and J R Ray \ddagger
\dagger Department of Mathematical Sciences, Loughborough University of Technology, UK
\ddagger Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, USA

Received 10 December 1992

Abstract

Ermakov-type systems in $2+1$ dimensions are introduced. Multiwave solutions of a ($2+1$)-dimensional Pinney equation and a modulated ($2+1$)-dimensional sine-Gordon equation are thereby constructed.

1. Introduction

The analysis of the coupled nonlinear ordinary differential equations known as Ermakov systems originated in 1880 [1]. There has since been an extensive literature devoted to their study [2-27]. The main theoretical interest in such systems centres around the fact that they admit a constant of motion, the Lewis-Ray-Reid (LRR) invariant, whereby a nonlinear superposition principle may be constructed. In terms of applications, Ermakov systems arise, in particular, in nonlinear elasticity [28,29] and nonlinear optics [30-34].

In a recent development, it was shown that, remarkably, the LRR invariant is the key to a linearization procedure for the standard Ermakov system [24]. This linearization has been exploited by Athorne [27] to analyse the stability and periodicity of the particular Ermakov system derived in the two-layer shallow water context in [23].

It is natural to seek generalizations of Ermakov systems which preserve their attractive properties. In this connection, Athorne [25] has recently introduced a class of nonlinear dynamical systems which include as special cases the autonomous Ermakov system and Kepler-type central force problems with angular dependence on the force. It was shown that such nonlinear Kepler-Ermakov (KE) systems are linearizable via essentially the same procedure as that given in [24]. This represents a modification of the Whittaker transformation which allows the general problem of motion under central force to be reduced to the problem of motion in a parallel field of force [36]. Whittaker employed a constant of motion, namely the angular momentum, in his linearization procedure. In a similar manner, the linearization of the standard Ermakov system depends on the use of the LRR invariant. A generalized invariant and accompanying linearization was presented for the KE system in [25].

Here, by contrast, our concern is not with the construction of invariants for extended Ermakov systems. Rather, we present multiwave solutions to $(2+1)$-dimensional Ermakov systems. The procedure is a development of that adopted in [37-40] in connection with soliton-like solutions of nonlinear Klein-Gordon equations. In this paper, a broad class of multiwave solutions are presented which are appropriate, in particular, both for a $(2+1)$-dimensional Pinney equation and a $(2+1)$-dimensional modulated sine-Gordon

[^0]equation. It is remarked that single-wave solutions of a modulated sine-Gordon equation were constructed by Ray via a Ermakov system in [17]. This work was later extended by Saermark [19] to produce kink solutions.

2. $(2+1)$-dimensional Ermakov systems

Here, we consider $(2+1)$-dimensional Ermakov-type systems

$$
\begin{align*}
& \square \phi+\omega^{2} \phi-\rho^{-3} H(\phi / \rho)=0 \\
& \square \rho+\omega^{2} \rho-\phi^{-3} J(\rho / \phi)=0 \tag{2.1}
\end{align*}
$$

where $\square=g^{-1 / 2} \partial_{\alpha} g^{1 / 2} g^{\alpha \beta} \partial_{\beta}$ and ω may, in general, depend in an arbitrary manner on ϕ, ρ and their partial derivatives; $g_{\alpha \beta}$ is the metric of the underlying three-dimensional Lorentz spacetime for which the signature 1 is adopted.

A dimensional reduction of the system (2.1) is sought whereby it becomes the classical Ermakov system. This is effected here by requiring that ϕ and ρ depend only on two functions ξ and η which satisfy the conditions

$$
\begin{equation*}
\square \xi=\square \eta=0 \quad(\nabla \xi)^{2}=1 \quad(\nabla \eta)^{2}=0 \quad \nabla \xi \nabla \eta=0 \tag{2.2}
\end{equation*}
$$

The existence of such functions restricts the structure of the underlying spacetime to be of the form of a $p p$-wave, i.e. flat-space + tensor product of a null-vector with itself. It follows from (2.2) that $\nabla \eta$ is a geodesic null vector field and $\nabla \xi$ is space-like. Choosing ξ, η and σ, the affine parameter along the $\nabla \eta$ geodesics, as coordinates, we can write the metric as

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} \eta(\mathrm{~d} \sigma+m(\xi, \eta, \sigma) \mathrm{d} \eta)+\mathrm{d} \xi^{2} \tag{2.3}
\end{equation*}
$$

For functions independent of σ, the d'Alembertian \square reduces to $\left.\partial_{\xi \xi}\right|_{\eta}$ and (2.1) reduces to the Ermakov system

$$
\begin{align*}
\left.\phi_{\xi \xi}\right|_{\eta}+\omega^{2} \phi & =\rho^{-3} H(\phi / \rho) \\
\rho_{\xi \xi} l_{\eta}+\omega^{2} \rho & =\phi^{-3} J(\rho / \phi) . \tag{2.4}
\end{align*}
$$

It is important to note that the quantity η enters into the system as a parameter.
Now, (2.4) yields

$$
\begin{equation*}
\partial_{\xi}\left(\rho \phi_{\xi}-\phi \rho_{\xi}\right)=\rho^{-2} H(\phi / \rho)-\phi^{-2} J(\rho / \phi) \tag{2.5}
\end{equation*}
$$

whence

$$
\begin{equation*}
r_{\tau \tau}=H(r)-r^{-2} J\left(r^{-1}\right) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
& r=\phi / \rho \tag{2.7}\\
& \tau=\int \rho^{-2} \ln \mathrm{~d} \xi+\alpha(\eta) \tag{2.8}
\end{align*}
$$

and $\alpha(\eta)$ is arbitrary.
At this stage, it is convenient to proceed in terms of the independent variables

$$
\begin{align*}
& g=\mathrm{e}^{\xi+\eta} \tag{2.9}\\
& h=\mathrm{e}^{\xi-\eta} \tag{2.10}
\end{align*}
$$

instead of $\boldsymbol{\xi}$ and η. The conditions (2.2) then become

$$
\begin{align*}
& \square g=g \quad \square h=h \\
& (\nabla g)^{2}=g^{2} \quad(\nabla h)^{2}=h^{2} \tag{2.11}\\
& (\nabla g)(\nabla h)=g h .
\end{align*}
$$

Integration of (2.6) yields

$$
\begin{equation*}
r_{\tau}=\sqrt{2\left\{I(\eta)+\int\left[H(r)-r^{-2} J\left(r^{-1}\right)\right] \mathrm{d} r\right\}} \tag{2.12}
\end{equation*}
$$

whence
$\frac{\rho^{4}}{2}\left[g \partial_{g}(\phi / \rho)+h \partial_{h}(\phi / \rho)\right]^{2}-\int^{\phi / \rho}\left[H(r)-r^{-2} J\left(r^{-1}\right)\right] \mathrm{d} r=I(g / h)$.
The latter relation corresponds to the LRR invariant of standard Ermakov theory.
Let us now turn to the conditions (2.11) on g and h and introduce the ansatz

$$
\begin{align*}
& g=\sum_{i=1}^{N} \mathrm{e}^{\theta_{i}+\delta_{i}} \tag{2.14}\\
& h=\sum_{i=1}^{M} \mathrm{e}^{\theta_{i}+\Delta_{i}} \tag{2.15}
\end{align*}
$$

where

$$
\begin{equation*}
\theta_{i}=p_{i} x+q_{i} y+w_{i} t \tag{2.16}
\end{equation*}
$$

and δ_{i}, Δ_{i} are arbitrary phase constants. Insertion of (2.14) and (2.15) into (2:11) produces the restrictions

$$
\begin{align*}
& p_{i}^{2}+q_{i}^{2}-w_{i}^{2}=1 \tag{2.17}\\
& \left(p_{i}-p_{j}\right)^{2}+\left(q_{i}-q_{j}\right)^{2}-\left(w_{i}-w_{j}\right)^{2}=0 \tag{2.18}
\end{align*}
$$

A geometric interpretation of the conditions (2.17) and (2.18) is suggested. Thus, if the vector $k_{1}=\left(p_{1}, q_{1}, w_{1}\right)$ is fixed subject to the requirement of its being a space-like unit vector then the endpoints of all the other $k_{i}=\left(p_{i}, q_{i}, w_{i}\right)$ have to be on the intersection of the light cone of the endpoint of k_{1} and the unit hyperboloid; this intersection consists of two lines. The light cone of the endpoint of k_{2}, however, will have only one line in
common with the one of k_{1}. Hence, the endpoints of all the k_{i} lie on the unit hyperboloid and the straight null line determined by k_{1} and the null vector $k_{1}-k_{2}$.

The condition (2.18) is satisfied if

$$
\begin{equation*}
\left(p_{i}-p_{j}, q_{i}-q_{j}, w_{i}-w_{j}\right)=\alpha_{i j}(\lambda, \mu, \nu) \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda^{2}+\mu^{2}=\nu^{2} \tag{2.20}
\end{equation*}
$$

and (2.17) requires that

$$
\begin{equation*}
\lambda p_{j}+\mu q_{j}-v w_{j}=0 \quad \alpha_{i j} \neq 0 \tag{2.21}
\end{equation*}
$$

In the above, the $\alpha_{i j}$ are arbitrary constants.
Once λ, μ, v are chosen in accordance with (2.20), if p_{1} is chosen arbitrarily, then q_{1} and w_{1} are determined via the constraints

$$
\begin{align*}
& p_{1}^{2}+q_{1}^{2}-w_{1}^{2}=1 \tag{2.22}\\
& \lambda p_{1}+\mu q_{1}-v w_{1}=0 \tag{2.23}
\end{align*}
$$

The remaining (p_{i}, q_{i}, w_{i}) are then given by

$$
\begin{equation*}
p_{i}=p_{1}+\alpha_{i 1} \lambda \quad q_{i}=q_{1}+\alpha_{i 1} \mu \quad w_{i}=w_{1}+\alpha_{i 1} \nu \tag{2.24}
\end{equation*}
$$

Accordingly, multiwave solutions of the conditions (2.11) are obtained in the form

$$
\begin{align*}
& g=\mathrm{e}^{p_{1} x+q_{1} y+w_{1} t} \sum_{i=1}^{N} \mathrm{e}^{\alpha_{i 1}(\lambda x+\mu y+\nu t)+\delta_{l}} \tag{2.25}\\
& h=\mathrm{e}^{p_{1} x+q_{1} y+w_{1} t} \sum_{i=1}^{M} \mathrm{e}^{\alpha_{i 1}(\lambda x+\mu y+v t)+\Delta_{i}} \tag{2.26}
\end{align*}
$$

where λ, μ, ν and p_{1}, q_{1}, w_{1} are subject to the constraints (2.20), (2.22) and (2.23).

3. The $(2+1)$-dimensional Pinney equation

Here, attention is turned to the particular Ermakov system

$$
\begin{align*}
& \square \phi+\omega^{2} \phi-k \phi^{-3}=0 \tag{3.1}\\
& \square \rho+\omega^{2} \rho=0 \tag{3.2}
\end{align*}
$$

coupled through ω^{2}. Thus, (3.1)-(3.2) represents a $(2+1)$-dimensional Pinney system. It is noted that higher-dimensional Pinney equations arise in quantum mechanical systems [30].

In this case, the canonical Ermakov system is

$$
\begin{align*}
& \phi_{\xi \xi} l_{\eta}+\omega^{2} \phi-k \phi^{-3}=0 \tag{3.3}\\
& \rho_{\xi \xi} l_{\eta}+\omega^{2} \rho=0 . \tag{3.4}
\end{align*}
$$

The associated first integral (2.13) yields

$$
\begin{equation*}
\rho \phi_{\xi}-\phi \rho_{\xi}=\sqrt{2 I(\eta)-k(\rho / \phi)^{2}} \tag{3.5}
\end{equation*}
$$

Let ρ_{1}, ρ_{2} be two linearly independent solutions of (3.4). The relation (3.5) yields

$$
\begin{align*}
& \rho_{1} \phi_{\xi}-\phi \rho_{1 \xi}=\sqrt{2 I_{1}(\eta)-k\left(\rho_{1} / \phi\right)^{2}} \\
& \rho_{2} \phi_{\xi}-\phi \rho_{2 \xi}=\sqrt{2 I_{2}(\eta)-k\left(\rho_{2} / \phi\right)^{2}} . \tag{3.6}
\end{align*}
$$

and elimination of ϕ_{ξ} gives

$$
\begin{equation*}
\phi W\left(\rho_{1}, \rho_{2}\right)=\rho_{2} \sqrt{2 I_{1}(\eta)-k\left(\rho_{1} / \phi\right)^{2}}-\rho_{1} \sqrt{2 I_{2}(\eta)-k\left(\rho_{2} / \phi\right)^{2}} \tag{3.7}
\end{equation*}
$$

where $W\left(\rho_{1}, \rho_{2}\right)$ is the Wronskian of ρ_{1}, ρ_{2}. Solution of (3.7) for ϕ produces the nonlinear superposition

$$
\begin{equation*}
\phi=\left[\bar{\lambda}(\eta) \rho_{1}^{2}+2 \bar{\mu}(\eta) \rho_{1} \rho_{2}+\bar{\nu}(\eta) \rho_{2}^{2}\right]^{1 / 2} \tag{3.8}
\end{equation*}
$$

where $\bar{\lambda}, \bar{\mu}, \bar{\nu}$ satisfy the relation

$$
\begin{equation*}
\bar{\lambda} \bar{\nu}-\bar{\mu}^{2}=\bar{k} / W\left(\rho_{1} ; \rho_{2}\right) . \tag{3.9}
\end{equation*}
$$

If $\omega=\omega(\eta)$ and we take

$$
\rho_{1}=\sin \omega \xi \quad \rho_{2}=\cos \omega \xi
$$

then (3.8) yields

$$
\begin{equation*}
\phi=[\alpha(\eta)+\beta(\eta) \sin (2 \omega(\eta) \xi+\gamma(\eta))]^{1 / 2} \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha^{2}-\beta^{2}=k / \omega . \tag{3.11}
\end{equation*}
$$

Thus, on use of (2.25)-(2.26), it is seen that the ($2+1$)-dimensional Pinney equation (3.1) admits the class of multiwave solutions given by the expression (3.10) with

$$
\begin{align*}
& \xi=p_{1} x+q_{1} y+w_{1} t+\frac{1}{2} \ln [\Phi(x, y, t ; \delta) \Psi(x, y, t ; \Delta)] \tag{3.12}\\
& \eta=\frac{1}{2} \ln [\Phi(x, y, t ; \delta) / \Psi(x, y, t ; \Delta)] \tag{3.13}
\end{align*}
$$

where

$$
\begin{align*}
& \Phi(x, y, t ; \delta):=\sum_{i=1}^{N} \mathrm{e}^{\alpha_{i 1}(\lambda x+\mu y+\nu t)+\delta_{i}} \tag{3.14}\\
& \Psi(x, y, t ; \Delta):=\sum_{i=1}^{M} \mathrm{e}^{\alpha_{i l}(\lambda x+\mu y+\nu t)+\bar{\Delta}_{i}} \tag{3.15}
\end{align*}
$$

It is noted that, for constant ω and k, there exists a Lagrangian for Pinney's equation. In figure 1, the energy density E associated with the Lagrangian is plotted at fixed time t for a solution of (3.1) with $\omega=k=1$. This solution corresponds to the simple choice

$$
\begin{equation*}
\alpha=\cosh \gamma \quad \beta=\sinh \gamma \quad \gamma=2 \mathrm{e}^{-\eta^{2}} \tag{3.16}
\end{equation*}
$$

together with

$$
g=\mathrm{e}^{x+y-t} \quad h=\mathrm{e}^{x-y+t}
$$

so that $\xi=x$ and $\eta=y-t$. In such a frame, the object moves in the positive y-direction
 fixed t.

4. A ($\mathbf{2}+1$)-dimensional modulated sine-Gordon equation

The $(2+1)$-dimensional Ermakov system

$$
\begin{align*}
& \square \phi+\omega^{2} \phi-k \rho^{-3} \sin (\phi / \rho)=0 \tag{4.1}\\
& \square \rho+\omega^{2} \rho=0 \tag{4.2}
\end{align*}
$$

is considered next. This represents a ($2+1$)-dimensional sine-Gordon equation (4.1) modulated by a function $\rho(x, y, t)$ which, in turn, is governed by (4.2). It is noted that $(1+1)$-dimensional modulated systems of the type (4.1) and (4.2) have been considered by Ray [17] and Saermark [19]. Therein, travelling wave solutions were obtained.

In this case, $H=k \sin (\phi / \rho), J=0$ so that the canonical equation (2.6) becomes

$$
\begin{equation*}
r_{\tau \tau}=k \sin r . \tag{4.3}
\end{equation*}
$$

Thus, if $r=r(\tau)$ is any solution of the nonlinear pendulum equation (4.3) then the nonlinear superposition

$$
\begin{equation*}
\phi=\rho(\xi) r\left\{\int \rho^{-2} \ln \mathrm{~d} \xi+\alpha(\eta)\right\} \tag{4.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{\xi \xi} \ln _{\eta}+\omega^{2} \rho=0 \tag{4.5}
\end{equation*}
$$

and ξ, η are given by (3.12)-(3.15) provides a multiwave solution of the modulated ($2+1$)dimensional sine-Gordon equation (4.1).

If, as in the $(1+1)$-dimensional case considered by Ray [17], the base solution

$$
\begin{equation*}
r=4 \tan ^{-1} \exp \left[\tau / k^{1 / 2}\right] \tag{4.6}
\end{equation*}
$$

of (4.3) is taken together with the particular solution

$$
\begin{equation*}
\rho=\sin \xi \tag{4.7}
\end{equation*}
$$

of (4.5) with $\omega=1$ then the nonlinear superposition (4.4) of (4.6) and (4.7) produces the multiwave solution

$$
\begin{equation*}
\phi=4 \sin \xi \tan ^{-1} \exp \frac{1}{k^{1 / 2}}(-\cot \xi+\alpha(\eta)) \tag{4.8}
\end{equation*}
$$

of the modulated $(2+1)$-dimensional sine-Gordon equation

$$
\begin{equation*}
\square \phi-\phi+k \sin ^{-3} \xi \sin (\phi / \sin \xi)=0 \tag{4.9}
\end{equation*}
$$

where ξ, η are given by (3.12)-(3.15).
In figure 2, the solution (4.8) is displayed at fixed time t in the special case $\xi=x, \eta=$ $y-t, \alpha=2 \mathrm{e}^{-\eta^{2}}$ and $k=1$.

Figure 2. The solution (4.8) at fixed t.

Appendix. A (1+1)-dimensional Ermakov system. Application to nonlinear heat conduction

Here, a $(1+1)$-dimensional Ermakov system

$$
\begin{align*}
& -\alpha \phi^{k-1} \rho^{-k-3} \phi_{t}+\phi_{x x}+\omega(x) \phi=\rho^{-3} H(\phi / \rho) \tag{A1}\\
& \rho_{x x}+\omega(x) \rho=\phi^{-3} J(\rho / \phi) \quad \alpha \neq 0 \tag{A2}
\end{align*}
$$

is introduced.
Combination of (A1) and (A2) yields

$$
\begin{equation*}
-\alpha \phi^{k-1} \rho^{-k-2} \phi_{t}+\rho \phi_{x x}-\phi \rho_{x x}=\rho^{-2} H-\phi^{-2} J \tag{A3}
\end{equation*}
$$

whence we obtain the canonical reduction

$$
\begin{equation*}
-\alpha r_{t^{\prime}}+\left(r^{(1-k) / k} r_{x^{\prime}}\right)_{x^{\prime}}=\Psi(r) \tag{A4}
\end{equation*}
$$

where

$$
\begin{equation*}
x^{\prime}=\int \rho^{-2} \mathrm{~d} x \quad t^{\prime}=t \quad r=\left(\frac{\phi}{\rho}\right)^{k} \tag{A5}
\end{equation*}
$$

and $\Psi(r):=k\left(H\left(r^{1 / k}\right)-r^{-2} J\left(r^{-1 / k}\right)\right)$.
Thus, it is seen that the ($1+1$)-dimensional Ermakov system (A1)-(A2) admits reduction to the nonlinear heat equation (A4) with a source term.

In particular, if $H=(\rho / \phi)^{2} J$ then it is seen that the nonlinear modulated heat equation

$$
\begin{equation*}
-\alpha \phi^{k-1} \rho^{-k-3} \phi_{t}+\phi_{x x}-\rho_{x x} \rho^{-1} \phi=0 \tag{A6}
\end{equation*}
$$

admits the nonlinear superposition principle

$$
\begin{equation*}
\phi=\rho(x) r^{1 / k}\left(\int \rho^{-2} \mathrm{~d} x, t\right) \tag{A7}
\end{equation*}
$$

where r is governed by the nonlinear heat equation

$$
\begin{equation*}
-\alpha r_{t^{\prime}}+\left(r^{(1-k) / k} r_{x^{\prime}}\right)_{x^{\prime}}=0 \tag{A8}
\end{equation*}
$$

The cases $k=-1, k=-3$ are of particular interest. Thus, if $k=-1$, (A8) is linearizable via a reciprocal transformation whereas if $k=-3$ it admits special group structure and associated similarity solutions.

References

[1] Ermakov V P 1880 Univ. Isv. Kiev 201
[2] Lewis H R Jr 1967 Phys. Rev. Lett. 18510
[3] Lewis H R Jr 1968 J. Math. Phys. 91976
[4] Lewis J R Jr and Riesenfeld W B 1969 J. Math. Phys. 101458
[5] Khandekar D C and Lawande S V 1975 J. Math. Phys. 16384
[6] Ray J R and Reid J L 1979 Phys. Lett. 71A 317
[7] Korsch H J 1979 Phys. Lett. 74A 294
[8] Ray J R 1980 Phys. Lett. 78A 4
[9] Wollenberg L S 1980 Phys. Lett. 79269
[10] Lutsky M 1980 Phys. Lett. 79A 301
[11] Lutsky M 1980 J. Math. Phys. 211370
[12] Ray J R and Reid J L 1981 J. Math. Phys. 2291
[13] Ray J R, Reid J L and Lutsky M 1981 Phys. Lett. 84A 42
[14] Ray J R 1981 Prog. Theor. Phys. 65877
[15] Sarlet W and Ray J R 1981 J. Math. Phys. 222504
[16] Sariet W 1981 Phys. Lett. 82A 161
[17] Ray J L 1981 Lett. Nuovo Cimento 30372
[18] Reid J L and Ray J R 1982 J. Phys. A: Math. Gen 152751
[19] Saermark K 1982 Phys. Lett. 90A 5
[20] Reid J L and Ray J R 1982 J. Math. Phys. 23503
[21] Reid J L and Ray J R 1983 J. Math. Phys. 242433
[22] Goedert J 1989 Phys. Lett. 136A 391
[23] Rogers C 1989 Research Report Department of Mathematical Sciences, Loughborough University, UK
[24] Athorne C, Rogers C, Ramgulam U and Osbaldestin A. 1990 Phys. Lett. 143A 207
[25] Athome C 1991 J. Phys. A: Math Gen. 24945
[26] Leach P G L 1991 Phys. Lett. 158A 102
[27] Athorne C J 1993 Diff. Eqns. to appear
[28] Shahinpoor M and Nowinski J L 1971 Int. J. Nonlin. Mech. 6193
[29] Rogers C and Ames W F 1989 Nonlinear Boundary Value Problems in Science ard Engineering (New York: Academic)
[30] Lee R A 1984 J. Phys. A: Math. Gen. 17535
[31] Cervero J M and Lejareta J D 1990 Quantum Opt. 2333
[32] Goncharenko A M and Kukushkin 1990 Vetsi Akad BSSR. Ser. Fiz. 632
[33] Cervero J M and Lejareta J D 1991 Phys. Lelt. 156A 201
[34] Goncharenko A M, Logvin Yu A, Samson A M, Shapovatov P S and Turovets S I 1991 Phys. Lett. 160A 138
[35] Athorne C 1991 Preprint No 91/29 Department of Mathematics, University of Glasgow
[36] Whittaker E T 1904 A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge: Cambridge University Press)
[37] Gibbon J D, Freeman N C and Davey A 1978 J. Phys. A: Math. Gen. 11 L93
[38] Gibbon J D, Freeman N C and Johnson R S 1978 Phys. Lett. 65 A 380
[39] Lou S and Guang G 1989 J. Math. Phys. 301614
[40] Lou S and Chen W 1991 Phys. Lett. 156A 260

[^0]: § Present address: School of Mathematics, University of New South Wales, Australia.

